

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level In Mechanics M1 (WME01) Paper 01

QUESTION NUMBER	SCHEME	MARKS
1	A $\partial \theta$ B T C ΔQ	
(a)	Horiz: $2 = T \cos \theta$	M1 A1
	T=2.5	A1
		(3)
(b)	Vert: $T + T \sin \theta = Mg$	M1 A1
	M = 0.41 or 0.408	A1
		(3)
		(6)
	Notes for question 1	
	N.B. If they have different tensions, they can score all the marks in (a) but nothing in (b). If they have $2 = T\cos(\frac{4}{5})$ or similar and never recover, allow M1A0.	
(a)		
M1	Horizontal equilibrium. Correct no. of terms, dimensionally	
A 1	correct, condone sin/cos confusion.	
A1 A1	Correct unsimplified equation. Correct answer. (ignore units)	
(b)	Correct answer. (ignore units)	
M1	Vertical equilibrium. Correct no. of terms, dimensionally correct,	
	condone \sin/\cos confusion and missing g , to give an equation	
	which must include M .	
A1	Correct unsimplified equation	
A1	Correct answer. (ignore units)	

QUESTION NUMBER	SCHEME	MARKS
2	Before $\xrightarrow{3}$ \xrightarrow{x}	
	$\begin{pmatrix} A \\ 5 \end{pmatrix}$ $\begin{pmatrix} B \\ x \end{pmatrix}$	
	After \longrightarrow 1.5	
2(a)	CLM	
	$(5 \times 3) - x^2 = (5 \times 1) + (x \times 1.5)$	M1A1
	OR: $5(-13) = x(1.5x)$	
	x = 2.5	A1
		(3)
2(b)	$I = \pm 5(1-3)$ or $I = \pm 2.5(1.52.5)$ $(I = \pm x(1.5x))$	M1A1
	I = 10 (Ns)	A1
		(3)
		(6)
	Notes for question 2	
(a)		
M1	Forms CLM equation OR equates impulses, condone sign	
	errors and extra g's and any correct cancellation, to give an	
A1	equation in <i>x</i> only. Correct unsimplified equation	
A1	Correct unsimplified equation Correct answer. If – 4 is seen, it must be rejected. (ignore units)	
(b)	Correct answer. If this seen, it must be rejected. (Ignore antis)	
M1	Impulse-momentum equation, dimensionally correct, correct	
	no. of terms for A or B.	
	Condone sign errors but must be <i>attempting</i> a difference of	
	momenta e.g. allow if they first state $I = \pm m(v - u)$ but then	
	make a sign error and end up with a sum.	
	If they clearly add the momenta, and there is no formula stated,	
	M0.	
	x does not need to be substituted.	
A1	M0 if <i>g</i> is included. Correct numerical expression.	
A1 A1	cao must be positive. Ignore missing or wrong units.	
111	A0 if both 10 and another answer are given.	

QUESTION NUMBER	SCHEME	MARKS
3(a)	A to B:	
<i>3(a)</i>	$s = \left(\frac{u+v}{2}\right)t : \qquad 400 = \left(\frac{u+28}{2}\right)20$	M1
	Other possible equations: $28 = u + 20a$	
	$400 = 20u + \frac{1}{2}a \times 20^2$	
	$28^2 = u^2 + 2 \times 400a$	
	$400 = (28 \times 20) - \frac{1}{2}a \times 20^2$	
	u = 12 *	A1* cso
		(2)
3(b)	A to B: Any of the above equations with $u = 12$ e.g. $v = u + at$ $28 = 12 + 20a$ (leads to $a = 0.8$)	M1 A1
	A to midpoint: $200 = 12t + \frac{1}{2}0.8t^2$	M1 A1
	OR: find v and use it to find t e.g. $v^2 = 12^2 + (2 \times 0.8 \times 200) \Rightarrow v = \sqrt{464}$ and then one of: $\sqrt{464} = 12 + 0.8t$ $200 = \left(\frac{12 + \sqrt{464}}{2}\right)t$ $200 = \sqrt{464}t - \frac{1}{2} \times 0.8t^2$	
	$t = 12$ (s) or better (11.9258), $5\sqrt{29} - 15$	A1
		(5)
3(c)	D - 260 = 1200(0.8)	M1A1ft
	D=1220 (N)	A1
		(3)
		(10)

	Notes for question 3	
(a)		
M1	Complete method to find the value of <i>u</i> .	
	(they may use two equations, eliminate a and solve for u)	
A1*	Correctly reaches the given answer.	
	N.B. If they use 2 equations, we need to see a eliminated and u	
	found correctly for this A mark.	
	N.B. No marks if they use $u = 12$ in (b) to find a and then use it	
	in (a) to show that $u = 12$.	
(b)		
M1	Relevant <i>suvat</i> equation to find acceleration. This could be	
	found in (a) or in (c) to earn these marks, but not	
	necessarily used in (b).	
A1	Correct equation(s).	
M1	Complete method to find an equation in t only.	
	(they may find ν (21.54065) first). Must use their calculated	
	acceleration and 12.	
A1	Correct unsimplified equation in <i>t</i> only.	
A1	Correct answer, $t = 12$ or better, $t = 11.9258$	
	If seen, the negative value for t (-41.9258) must be rejected.	
(c)		
M1	Use of $F=ma$. Correct no. of terms, dimensionally correct, a	
	does not need to be substituted, condone sign errors.	
	M0 if they use $a = g$.	
A1ft	Correct unsimplified equation, ft on their a.	
A1	Accept 1200 (N)	

QUESTION NUMBER	SCHEME	MARKS
	hay do (ii) first using the OR method to find α (and possibly β) and	nd then use
either angle to do (i), using the Sine Rule or Cosine Rule.		
4(i)	Q 150° 30° $\sqrt{129}$ OR $\sqrt{129}$ X 30° $\sqrt{129}$ X 30° Complete method to find an equation in X only: • Using correct vector triangle with cosine rule: $129 = X^2 + \left(5\sqrt{3}\right)^2 - 2X \times 5\sqrt{3}\cos 30^\circ$ • Using correct vector triangle with sine rule to find α : $\frac{\sqrt{129}}{\sin 30^\circ} = \frac{5\sqrt{3}}{\sin \alpha}$	M1 A1
	$\alpha = 22.4109^{\circ} => \beta = 180^{\circ} - 30^{\circ} - 22.4109^{\circ} = 127.589^{\circ}$ Then sine rule: $\frac{X}{\sin \beta} = \frac{\sqrt{129}}{\sin 30^{\circ}} = \frac{5\sqrt{3}}{\sin \alpha}$ or cosine rule: $(5\sqrt{3})^{2} = X^{2} + 129 - 2X\sqrt{129}\cos \alpha$ or $X^{2} = (5\sqrt{3})^{2} + 129 - 2\times 5\sqrt{3} \times \sqrt{129}\cos \beta$ to find X . • Using components with magnitude: $\sqrt{129} = \sqrt{\left(X\cos 30^{\circ} - 5\sqrt{3}\right)^{2} + \left(X\sin 30^{\circ}\right)^{2}}$ Solves their equation (if quadratic, must include an X term) to	M1
	find an X value.	
	X = 18	A1

QUESTION	COLIEME	MADIZO
NUMBER	SCHEME	MARKS
4(ii)	EITHER Finds an equation in β only using their <i>X</i> : e.g. $18 - \sqrt{129}$	M2
	$\frac{18}{\sin \beta} = \frac{\sqrt{129}}{\sin 30^{\circ}}$ or $18^{2} = (5\sqrt{3})^{2} + 129 - 2 \times 5\sqrt{3} \times \sqrt{129} \cos \beta$	A1
	or $\cos \beta = \frac{\mathbf{R.Q}}{ \mathbf{R} \mathbf{Q} }$ where R is the resultant $(\beta) = 128^{\circ}$ to nearest degree	A1
	OR Finds a relevant angle (not β) first	
	• Using triangle of forces:	M1 A1
	$\alpha = \sin^{-1}\left(\frac{\sin 30^\circ \times 5\sqrt{3}}{\sqrt{129}}\right) = 22.4109^\circ$	
	Or: $\alpha = \cos^{-1} \left(\frac{18^2 + 129 - (5\sqrt{3})^2}{2 \times 18 \times \sqrt{129}} \right) = 22.4109^{\circ}$	
	• Using components:	
	Resultant force = $(18\cos 30^{\circ} - 5\sqrt{3})\mathbf{i} + (18\sin 30^{\circ})\mathbf{j}$	
	Leading to $\tan^{-1} \left(\frac{4\sqrt{3}}{9} \right) = 37.589^{\circ}$	
	or $\tan^{-1} \left(\frac{9}{4\sqrt{3}} \right) = 52.411^{\circ}$	
	or e.g $\sin^{-1}\left(\frac{9}{\sqrt{129}}\right) = 52.411^{\circ}$	
	Completes the method to find required angle (β) eg	M1
	• $150^{\circ} - \alpha$ or $210^{\circ} + \alpha$	
	• $180^{\circ} - 52.411^{\circ}$ or $180^{\circ} + 52.411^{\circ}$	
	• $90^{\circ} + 37.859^{\circ} \text{ or } 270^{\circ} - 37.859^{\circ}$	
	(β) = 128° to nearest degree	A1
	Accept 232°	
		(8)

	Notes for question 4	
N.B. If 150° is used in either the sine or cosine rule, they are using an incorrect vector		
triangle and no M marks are available.		
(i)		
M1	Complete method to form an equation in <i>X</i> only. This could	
	involve cosine rule and/or sine rule or components.	
	Note the component forms:	
	$\mathbf{P} = X \cos 30^{\circ} \mathbf{i} + X \sin 30^{\circ} \mathbf{j}$, condone cos/sin confusion	
	$\mathbf{Q} = -5\sqrt{3}\mathbf{i}$ oe (they could have chosen different + directions)	
A1	Correct equation	
M1	Provided they have found an <i>X</i> value, not necessarily correctly,	
	this mark can be awarded.	
A1	Correct answer. If seen, a negative value must be rejected.	
(ii)	EITHER	
M2	Complete method to find an equation in β only	
A1	Correct equation	
A1	cao	
	OR	
M1	Complete method to find a relevant angle	
A1	Correct relevant angle: 22.4109°,37.589°,52.411°	
M1	Completes the method to find the required angle	
A1	cao	

QUESTION NUMBER	SCHEME	MARKS
5	$R_{\rm C}$ $R_{\rm D}$	
	A C P A B B 55g 30g 539 294	
	0.4 1.1 1.1 0.4	
5 (a)	M(D)	
5(a)	$(R_C \times 2.2) = 55g(2.2 - x) + 30g(1.1)$	M1A1
	$(R_C) = (686 - 245x) \text{ (N)} *$	A1 *
	N.B. The M mark here is not available if they use $R_C = 4R_D$ to obtain the given result.	
		(3)
5(b)	$R_C = 4R_D$	M1
	Vert: $R_C + R_D = 55g + 30g$ $\Rightarrow \frac{5}{4} (686 - 245x) = 55g + 30g$	M1A1
	Relevant moments equations: $M(C)$: $55gx + 30g(1.1) = R_D(2.2)$	
	M(A): $R_C(0.4) + R_D(2.6) = 55g(x+0.4) + 30g(1.5)$	
	M(P): $R_C x + 30g(1.1-x) = R_D(2.2-x)$	
	$M(G)$: $R_C(1.1) = 55g(1.1-x) + R_D(1.1)$	
	M(B): $R_D(0.4) + R_C(2.6) = 30g(1.5) + 55g(2.6 - x)$	
	x = 0.08	(4)
5(c)	M(C): $Mg(0.4) = 30g(1.1)$	M1 A1
	$M = 83 \text{ or } 82.5 \text{ or } \frac{165}{2} \text{ oe}$	A1
	Other possible equations with $S_D = 0$	
	$Vert: S_C = Mg + 30g$	
	$M(A): S_C(0.4) = 30g(1.5)$	
	$M(G): S_C(1.1) = Mg(1.5)$	
	$M(D): S_C(2.2) = 30g(1.1) + Mg(2.6)$	
	$M(B): S_C(2.6) = 30g(1.5) + Mg(3)$	
	from which S_C would need to be eliminated to give an equation in M only.	
		(3)
		(10)

	Notes for question 5	
(a)		
M1	Forms an equation in R_C and x only. Dimensionally correct and	
	the correct no. of terms. Either a moments equation about <i>D</i> or	
	two other equations combined to eliminate R_D .	
A1	Correct unsimplified equation	
A1*	Correctly reaches the given answer with at least one line of	
	intermediate working.	
(b)		
M1	Use of $R_C = 4R_D$	
M1	Complete method to form an equation in x only. Dimensionally correct and the correct no. of terms. Either vertical resolution or a moments equation(s) with R_C and R_D eliminated. R_C must be	
	replaced with the given expression in (a). R_D replaced with	
	$\frac{1}{4}R_C$ but condone $4R_C$ for the method mark.	
A1	Correct unsimplified equation in <i>x</i> only.	
A1	Correct answer	
(c)		
M1	Use $S_D = 0$ and forms an equation in M only. Dimensionally	
	correct and the correct no. of terms. M0 if $S_D \neq 0$.	
A1	Correct unsimplified equation	
A1	Correct answer, 83 or 82.5 o.e.	

NUMBER 6(a)	SCHEME	MARKS
1/1 (L /	A to B: $V^2 = 24^2 + 2(-g)(-2.5)$	M1 A1
	OR: e.g. $0 = 24^2 - 2gh$ and $V^2 = 2g(h+2.5)$ oe	
	V = 25	A1
		(3)
6(b)	Some possible equations in t : 25 = -24 + gt $(25 + (-24))t$	M1 A1
	$2.5 = \frac{(25 + (-24))t}{2}$ $2.5 = -24t + \frac{1}{2}gt^{2}$	
	$2.5 = 25t - \frac{1}{2}gt^{2}$ Or they may find $t_{UP}\left(\frac{24}{g}\right)$ and $t_{DOWN}\left(\frac{25}{g}\right)$ AND add $t = 5 (s)$	
	t = 5 (s)	A1
		(3)
6 (c)	From A to C: $10 = 24t + \frac{1}{2}(-g)t^2$	M1 A1
1 .	ha abaysa ayadaatia aad findina tha maaitiya diffaaanaa in tha maata	
N.B. Allow t	he above quadratic and finding the positive difference in the roots his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$	
N.B. Allow t	his mark if they solve their quadratic, and give the answer as a	A1
N.B. Allow t	his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$	A1 M1A1
N.B. Allow t	his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$ $4, 4.0 \text{ or } 3.98 \text{ (s)}$	
N.B. Allow t	his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$ $4, 4.0 \text{ or } 3.98 \text{ (s)}$ $\mathbf{ALT 1:} \text{From } A \text{ to } C: W^2 = 24^2 - 2 \times 10g$ $0 = W - g(\frac{1}{2}t)$	M1A1
N.B. Allow t	his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$ 4, 4.0 or 3.98 (s) ALT 1: From <i>A</i> to <i>C</i> : $W^2 = 24^2 - 2 \times 10g$ $0 = W - g(\frac{1}{2}t)$ 4.0 or 3.98 (s) ALT 2: From <i>A</i> to <i>C</i> : $W^2 = 24^2 - 2 \times 10g$	M1A1 M1
N.B. Allow t	his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$ 4, 4.0 or 3.98 (s) ALT 1: From <i>A</i> to <i>C</i> : $W^2 = 24^2 - 2 \times 10g$ $0 = W - g(\frac{1}{2}t)$ 4.0 or 3.98 (s) ALT 2: From <i>A</i> to <i>C</i> : $W^2 = 24^2 - 2 \times 10g$	M1A1 M1
N.B. Allow t	his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$ $4, 4.0 \text{ or } 3.98 \text{ (s)}$ ALT 1: From A to C: $W^2 = 24^2 - 2 \times 10g$ $0 = W - g(\frac{1}{2}t)$ $4.0 \text{ or } 3.98 \text{ (s)}$	M1A1 M1 A1 M1A1
N.B. Allow t	his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$ 4, 4.0 or 3.98 (s) ALT 1: From A to C: $W^2 = 24^2 - 2 \times 10g$ $0 = W - g(\frac{1}{2}t)$ 4.0 or 3.98 (s) ALT 2: From A to C: $W^2 = 24^2 - 2 \times 10g$ $0 = Wt + \frac{1}{2}(-g)t^2$	M1A1 M1 A1 M1A1 M1
N.B. Allow t	his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$ 4, 4.0 or 3.98 (s) ALT 1: From A to C: $W^2 = 24^2 - 2 \times 10g$ $0 = W - g(\frac{1}{2}t)$ 4.0 or 3.98 (s) ALT 2: From A to C: $W^2 = 24^2 - 2 \times 10g$ $0 = Wt + \frac{1}{2}(-g)t^2$	M1A1 M1 A1 M1A1 M1
N.B. Allow to	his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$ 4, 4.0 or 3.98 (s) ALT 1: From A to C: $W^2 = 24^2 - 2 \times 10g$ $0 = W - g(\frac{1}{2}t)$ 4.0 or 3.98 (s) ALT 2: From A to C: $W^2 = 24^2 - 2 \times 10g$ $0 = Wt + \frac{1}{2}(-g)t^2$ 4.0 or 3.98 (s)	M1A1 M1 A1 M1A1 M1
N.B. Allow to	his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$ 4, 4.0 or 3.98 (s) ALT 1: From A to C: $W^2 = 24^2 - 2 \times 10g$ $0 = W - g(\frac{1}{2}t)$ 4.0 or 3.98 (s) ALT 2: From A to C: $W^2 = 24^2 - 2 \times 10g$ $0 = Wt + \frac{1}{2}(-g)t^2$ 4.0 or 3.98 (s) speed(m s ⁻¹) 25 24	M1A1 M1 A1 M1A1 M1A1 M1 A1 (4)
N.B. Allow to	his mark if they solve their quadratic, and give the answer as a es: $t_1 \le t \le t_2$ 4, 4.0 or 3.98 (s) ALT 1: From A to C: $W^2 = 24^2 - 2 \times 10g$ $0 = W - g(\frac{1}{2}t)$ 4.0 or 3.98 (s) ALT 2: From A to C: $W^2 = 24^2 - 2 \times 10g$ $0 = Wt + \frac{1}{2}(-g)t^2$ 4.0 or 3.98 (s) speed(m s ⁻¹) 25	M1A1 M1 A1 M1A1 M1 A1 (4) B1 shape B1 ft

	Notes for question 6	
(a)		
M1	Complete method to find an equation in <i>V</i> only. Condone sign	
	errors.	
A1	Correct equation in V only using g. Note the sign of 2.5 and g	
	should be the same.	
A1	cao	
(b)		
M1	Complete method to find an equation in <i>t</i> only. Condone sign	
	errors.	
A1	Correct equation in <i>t</i> only using <i>g</i> .	
A1	cao	
(c)		
M1	Forming an equation or equations which could lead to a relevant	
	time. Condone sign errors.	
A1	Correct equation(s)	
M1	Complete method to find the required time.	
A1	cao	
(d)		
B 1	Correct shape. It should appear symmetrical with regards to	
	gradients but the end point should be higher than the start point.	
	Vertex on horizontal axis.	
B1ft	Correct labels (24, 25 and 5), ft on their answers to (a) and (b),	
	provided they are positive.	
	N.B. ignore an incorrect time when $v = 0$.	
	Neither mark available if using a velocity-time graph.	

QUESTION NUMBER	SCHEME	MARKS
N.B	• Column vectors acceptable throughout apart from the answer to ((b).
7(a)	$\sqrt{12^2 + 16^2} = 20 (\mathrm{km}\mathrm{h}^{-1})$	M1 A1
		(2)
7(b)	(19i + 22j) + t(12i - 16j)	M1 A1
		(2)
7(c)	Displacement vector	
(i)	$\overrightarrow{LS} = (19+12t-26)\mathbf{i} + (22-16t-15)\mathbf{j}$	M1
	or $\overrightarrow{SL} = (26-19-12t)\mathbf{i} + (15-22+16t)\mathbf{j}$	
	Correct with i and j collected	A1
	$\overrightarrow{LS} = (12t - 7)\mathbf{i} + (7 - 16t)\mathbf{j}$	
	or	
	$\overrightarrow{SL} = (7-12t)\mathbf{i} + (16t-7)\mathbf{j}$	
	Use of Pythagoras to find the distance	M1
	$ \overrightarrow{LS} = \sqrt{(12t - 7)^2 + (7 - 16t)^2}$	
	1 1 '	
	Correct 3TQ	
	$400t^2 - 392t + 98$	A1
	Min occurs when $t = 0.49$	A1
	Alternative for last 3 marks:	
	Closest when relative pv is perpendicular to relative velocity	M1
	i.e $[(12t-7)\mathbf{i} + (7-16t)\mathbf{j}].(12\mathbf{i} - 16\mathbf{j}) = 0$	A1
	400t - 196 = 0	A1
(ii)	Min occurs when $t = 0.49$	M1
(11)	$\sqrt{1.96} = 1.4$ (km)	
	1.4 > 1.3 so it is safe for <i>S</i> to continue its course.	A1 cso
	A14 42 6 () () 1 (!)	(7)
7(a)	Alternative for (c)(i) and (ii):	
(i)	_16	M1
(1)	Path of S: $y-22 = \frac{-10}{12}(x-19)$	IVII
	Path of S: $y-22 = \frac{-16}{12}(x-19)$ Normal through L: $y-15 = \frac{12}{16}(x-26)$	A1
	Solve for either x OR y	M1
	x = 24.88 OR $y = 14.16$	A1
	$24.88 = 12t + 19 \text{ OR } 14.16 = 22 - 16t \implies t = 0.49$	A1
(ii)	$\sqrt{(26-24.88)^2+(15-14.16)^2}=1.4$	M1
	1.4 > 1.3 so it is safe for <i>S</i> to continue its course.	A1 cso
		(7)
	Alternative for (c)(i):	
	Path of S: $(19i + 22j) + t(12i - 16j)$	3.54.4.4
	Normal through L : $(26\mathbf{i} + 15\mathbf{j}) + k(16\mathbf{i} + 12\mathbf{j})$ oe	M1 A1
	Solve for t	M1
	t = 0.49	A2 (5)
		(5)
		(11)

	Notes for question 7		
(a)			
M1	Use of Pythagoras to find the speed. Since this is a 3,4,5 triangle the correct		
	answer may appear without working.		
A1	cao		
(b)			
M1	Correct structure		
A1	Correct answer o.e. with i's and j's		
(c) (i)			
M1	Subtraction used to find the displacement vector \overrightarrow{LS} or \overrightarrow{SL}		
A1	Correct components for \overrightarrow{LS} or \overrightarrow{SL} with i 's and j 's collected, seen or		
	implied.		
M1	Use of Pythagoras with their components, which must have come from		
	attempt at subtracting or adding s and l, to form a 3TQ for distance or		
	distance squared.		
A1	Correct 3TQ, seen or implied, e.g allow $400t^2 - 392t + 96.31$		
A1	cao Note: The correct value $t = 0.49$ may appear without working as a result		
	of the quadratic solver on a calculator. Other methods may include		
	completing the square or differentiation.		
	N.B. Correct $3TQ = 1.3^2$ oe can score max M1A1M1A1		
(ii)			
M1	Use of their t value, which must have come from an attempt to minimise the		
	distance LS, to find the shortest distance between S and L.		
	Note: The correct value 1.4 may appear without working since the quadratic		
	solver on a calculator will give a min value for d^2 as 1.96.		
A1cso	Correct conclusion by comparing 1.4 and 1.3.		
	N.B . Accept e.g. '1.4 therefore it is safe'.		

QUESTION	SCHEME	MARKS
NUMBER 8(a)	Perp. to plane for P : $R = mg \cos a$	M1A1
0(a)	P: $T = mg \sin \alpha + F$	M1 A1
	Q: T = 0.5mg	B1
	Q. I = 0.3mg	21
	N.B. $mg \sin \alpha + F = 0.5mg$ scores M1A1 (LHS) B1 RHS)	
	Use of $F = \mu R$	B1
	$0.5mg = \frac{5mg}{13} + \mu \frac{12mg}{13}$	dM1
	$\mu = \frac{1}{8}$	A1
	0	(8)
8(b)	$mg \sin \alpha - F = ma$	M1 A1
	$\left(a = \frac{7g}{26} \text{ (ms}^{-2})\right)$ $V^{2} = 0^{2} + 2\left(\frac{7g}{26}\right)0.8$	M1
	V = 2.1 or 2.05	A1
		(4)
		(12)
	Notes for question 8	
(a)		
M1	Resolve perpendicular to find an expression for R in terms of m ,	
A 1	condone sin/cos confusion and sign errors.	
A1 M1	Correct unsimplified equation. Form an equilibrium equation for <i>P</i> . Correct no. of terms,	
1411	dimensionally correct. If $F=ma$ is used then a must be zero.	
A1	Correct unsimplified equation.	
B1	Correct equation	
B1	Use of $F = \mu R$, seen or implied, in an equation.	
dM1	Dependent on previous M mark, replace trig and form an	
	equation in μ only.	
A1	Correct answer. Accept 0.125, 0.13	
(b)		
M1	Use of $F=ma$ for P . Correct no. of terms, dimensionally	
	correct, ignore sin/cos confusion.	
A1	Correct equation, trig and <i>F</i> do not need to be substituted.	
M1	Use their calculated acceleration to form an equation in <i>V</i> .	
A 4	M0 if they use g.	
A1	Correct answer 2/3sf	